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Water-repellent materials, possessing a high degree of hydro-
phobicity are currently under a spotlight. Preparative
approaches are often inspired by naturally evolved biological
systems.[1] Specifically, a leaf of the lotus plant exhibits an
inherent self-cleaning mechanism resulting frommicron-sized
waxy nodes protruding from its surface such that water is
naturally repelled, removing any foreign debris.[2,3] This
cleansing mechanism, commonly referred to as the “lotus
effect”, has been artificially reproduced in order to prepare
materials with pronounced hydrophobicity. Utilized techni-
ques include surface patterning,[4] molecular self-assembly,[5]

deposition,[6] and etching.[7] However, these examples often
require aggressive chemical surface treatments, high temper-
ature post-surface modification, or elaborate patterning. For
such reasons, there exists a demand to engineer hydrophobic
materials that are easy to prepare on a large scale.

Fluorinated compounds are an obvious choice for hydro-
phobic applications due to their low surface energy. Poly-
hedral molecules may also improve hydrophobic character by
increasing the roughness of the material surface. There have
been many reported attempts to synthesize and characterize
partially or fully fluorinated polyhedra. These reports include
the fluorination or fluoroalkylation of C60.

[8] Unfortunately,
C60F48 cannot be used as a hydrophobic material, as it is
metastable and is hydrolyzed in aqueous solutions.[9] The
perfluorocarborane species, perfluoro-deca-b-methyl-para-
carborane, characterized by single crystal X-ray studies,
shows remarkable hydrolytic and oxidative stability.[10] Fluo-
rinated carbon nanotubes and nanofibers have also been
produced.[11] These fluorinated polyhedral compounds may
be useful in hydrophobic applications, but are generally
hazardous to prepare, require air and moisture sensitive
manipulations, and have limited economies of scale. For these
reasons, alternative fluorinated polyhedra are highly desired.

Polyhedral oligomeric silsesquioxanes (POSS) are ther-
mally robust cages consisting of a silicon–oxygen core frame-
work possessing alkyl functionality on the periphery. They are
used for the development of high performance materials in

medical, aerospace, and commercial applications.[12] POSS
molecules can be functionally tuned, are easily synthesized
with inherent functionality, are discreetly nano-sized, and are
often commercially available. Furthermore, POSS com-
pounds may possess a high degree of compatibility in blended
polymers and can easily be covalently linked into a polymer
backbone.[13] The incorporation of POSS into polymers
produces nanocomposites with improved properties, such as,
but not limited to, glass transition temperature, mechanical
strength, thermal and chemical resistance, and ease of
processing.

Attempts to produce fluorinated POSS compounds have
met with little success. The hydrolysis of (3,3,3-trifluoropro-
pyl)trichlorosilanes resulted in a mixture of products.[14] After
purification, the octamer, (3,3,3-trifluoropropyl)8Si8O12 (FP)
POSS was isolated in 10–32% yield. More recently, FP was
produced by a “corner-capping” methodology that requires
multiple steps, as well as the use of the moisture sensitive
trisodium salt, Na3(3,3,3-trifluoropropyl)7Si7O12.

[15] To date,
attempts to produce long-chain fluoroalkyl POSS compounds
have proved unsuccessful.

Herein, we demonstrate the facile preparation of a novel
class of octameric fluorinated POSS compounds (F-POSS) by
the facile, single-step, base-catalyzed condensation of trialk-
oxysilanes in alcoholic media to produce nearly quantitative
yields of octameric F-POSS compounds (Scheme 1).

(1H,1H,2H,2H-NonaFluorohexyl)8Si8O12 (FH),
(1H,1H,2H,2H-tridecafluorooctyl)8Si8O12 (FO), and
(1H,1H,2H,2H-heptadecafluorodecyl)8Si8O12 (FD) POSS
have been produced by this operationally simple, one-pot
synthesis. For hydrophobicity comparative studies, FP (where
Rf=CH2CH2CF3) was produced using an alternate method-
ology.[15]

These F-POSS compounds are soluble in fluorinated
solvents and their melting points lie between 122 and 140 8C.
Unlike most non-fluorinated POSS compounds, thermogra-
vimetric analysis (TGA) indicates F-POSS volatilize rather
than decompose, as no residue remains after heating under
either nitrogen or dry air. FD is the most stable compound,

Scheme 1. Synthesis of F-POSS compounds FH, FO, and FD.
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subliming at over 300 8C. F-POSS are also very dense, high
molecular weight materials. For example, FD has a molecular
weight of 3993.54 gmol�1 and a density of 2.067 gcm�3.

The ability to crystallize F-POSS compounds from
fluorinated solvents, using solvent evaporation/vapor diffu-
sion techniques, enabled the growth of single crystals for high
resolution (0.75 ?) X-ray diffraction studies (Figure 1). Both

FH and FD are triclinic (P1) showing the presence of one and
two crystallographically independent “half” molecules in the
asymmetric unit, respectively. In both cases, there is an
inversion center in the middle of the POSS core, which results
in four pairs of fluoroalkyl chains with similar conformations.
The molecular structure of F-POSS contains rigid, rod-like
fluoroalkyl chains, which are attached to the silicon atoms of
the POSS cage by flexible methylene groups. The relative
arrangement of these components and resulting molecular
interactions determine their thermal properties and may also
contribute to surface properties, including hydrophobicity.
The crystal structures of FH and FD showed a near-parallel
arrangement of the fluoroalkyl chains. These result from the
formation of strong intramolecular interactions between
electropositive silicon and electron-rich fluorine atoms.
These intramolecular contacts of approximately 3.0 ? are
significantly shorter than the sum of van der Waals radii for
silicon and fluorine at 2.10 and 1.47 ?, respectively.[16] The
packing of FD results in the POSS cores resting at an angle,
with respect to the linear fluoroalkyl groups (mean least
square angle ca. 1048). This results in a rougher packing
surface than FH, as seen in the electrostatic potential surfaces
(Figure 2). This may also contribute to differences in hydro-
phobicity.

The hydrophobicity of spin-cast F-POSS surfaces was
tested using water drop shape analysis and measured for the

corresponding water contact angle (Figure 3). The relation-
ship of contact angle and surface energy is governed by
YoungCs equation, which relates the interfacial tension of the

surface to the liquid and gas phases of water.[17] A trend was
observed where the F-POSS static water contact angles
increased with longer fluorocarbon chain length. Similar
observations have been made in many fluorinated systems,
including polymers,[18] copolymers,[19] and monolayers,[20] as
well as corresponding to total fluorine content.[21] FD was
surprisingly found to have a static water contact angle over
1508. In fact, FO and FD are so hydrophobic that, even with a
density over 2 gcm�3, crystals (ca. 15 mmD15 mmD3 mm) of
these F-POSS compounds float on the surface of water!

It is well known that hydrophobicity is a function of both
surface tension and surface roughness, as demonstrated by
Cassie and Baxter[22] and Wenzel.[23] Figure 4a is a height
image taken with an atomic force microscope (AFM) of a
spin-cast FD surface. This surface has a root-mean-squared
(rms) roughness of approximately 4 mm. Surfaces of all F-
POSS compounds were prepared in the same manner, with

Figure 1. ORTEP representation of FH and FD POSS at 103 K, with
thermal ellipsoids set at 50% probability. Green F, black C, dark
blue H, red O, light blue Si.

Figure 2. Electrostatic potential surfaces of FH and FD POSS.

Figure 3. Graph showing water contact angles of FP, FH, FO, and FD.
Hydrophobicity increases with fluoroalkyl chain length.
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similar 3–4 mm rms surface roughness. Figure 4b is the phase
image of the same surface.

In conclusion, new octameric fluorinated polyhedral
oligomeric silsesquioxanes (F-POSS) have been produced
by a facile “one-pot” synthetic method. The polyhedral
compounds can be prepared in nearly quantitative yields and
hundred gram quantities, eliminating the need for complex
processes and patterning techniques to produce hydrophobic
fluorinated surfaces. The compounds were shown to be
thermally and hydrolytically stable and are less-hazardous
to prepare than many other fluorinated compounds. These
compounds are also soluble and have low melting temper-
atures, indicating that they may be solvent/melt-processed
into polymers for desired property enhancements. The
incorporation of F-POSS into polymers may produce nano-
composites with improved surface properties, including
hydrophobicity. To our knowledge, FD is the most hydro-
phobic crystalline solid material known.

Experimental Section
All reagents were purchased from commercial sources and purified
according to established procedures.[24]

Synthesis of FH : To a solution of 1H,1H,2H-nonafluorohexyl-
triethoxysilane (4.1 g) in ethanol (10 mL) was added KOH (2 mg)
dissolved in deionized water (270 mg) at room temperature. After
continuous stirring for 24 h, a white precipitate was filtered and
washed repeatedly with ethanol. The solid was collected and
redissolved in Asahiklin AK-225G (1,3-dichloro-1,1,2,2,3-pentafluor-
opropane), and residual KOH was extracted by washing repeatedly
with deionized water. The organic layer was dried with MgSO4,
filtered, concentrated, and dried under vacuum to afford
(1H,1H,2H,2H-nonafluorohexyl)8Si8O12 (FH) as a white solid in
nearly quantitative yield. FO and FD were prepared in a similar
manner using 1H,1H,2H,2H-tridecafluorooctyltriethyoxysilane and
1H,1H,2H,2H-heptadecafluorodecyltriethoxysilane, respectively.

Attempts to obtain FP using the same process resulted in a
mixture of eight-, ten-, and twelve-membered polyhedra. Therefore,
FP was prepared by the recently reported “corner-capping” of (3,3,3-
trifluoropropyl)7Si7O12 trisodium salt with 3,3,3-trifluoropropyltri-
chlorosilane.[15]

Detailed X-ray crystallography data,[25] surface preparation data,
and analytical characterization data of F-POSS compounds are
included in the Supporting Information.
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2001). Graphite monochromated MoKa (l = 0.71073 ?) radia-
tion was employed for data collection and corrected for Lorentz
and polarization effects using SAINT V 6.22 program (Bruker
AXS: Madison, 2001), and reflection scaling (SADABS pro-
gram, Bruker AXS: Madison, WI, 2001). Both the structures
were solved by direct methods (SHELXTL 5.10, Bruker AXS:
Madison, 2000) and all non-hydrogen atoms refined anisotropi-
cally using full-matrix least-squares refinement on F2. Hydrogen
atoms were added at calculated positions. For FH,Mr= 2393.46,
triclinic, space group P1̄, a= 11.806(5), b= 12.393(5), c=

15.729(6) ?, a = 75.073(6), b = 76.024(6), g = 66.151(5)8, V=
2009.0(14) ?3, F(000)= 1176, 1calcd(Z=1)= 1.987 gcm�3, m =
0.356 mm�1, approximate crystal dimensions 0.37 D 0.24 D

0.20 mm3, q range= 1.36 to 25.358, 19582 measured data of
which 7288 (Rint= 0.0194) unique with 718 refined parameters,
final R indices [I> 2s(I)]: R1= 0.0368, wR2= 0.0981, R1=
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Mr= 3993.78, triclinic, space group P1̄, a= 10.352(1), b=
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2.092 gcm�3, m = 0.341 mm�1, approximate crystal dimensions
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data of which 23049 (Rint= 0.0203) unique with 2125 refined
parameters, final R indices [I> 2s(I)]: R1= 0.0564, wR2=

0.1599, R1= 0.0676, wR2= 0.1728 (all data), GOF on F2=
1.005. CCDC 608207 (FH) and 608209 (FD) contain the
supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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